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Chapter 1

Introduction

High throughput of network infrastructure servers largely depends on their mem-

ory performance. While processor speed has been doubling roughly every eighteen

months, memory access latencies reduce at a rate of about 10% per year. Bottle-

neck in server performance has shifted from processor to memory hierarchy, which

includes cache, main memory and virtual memory performance.

This thesis is an outcome of our efforts to study the impact of memory subsystem

performance on high throughput servers. It reports the results of our static analysis

of memory access patterns and throughput of selected network applications. It also

presents an in-depth measurement-based study of memory performance of three

representative high throughput servers. In addition, a customized RTP server was

implemented to investigate the benefits of memory latency hiding.

In this introductory chapter, we present a general background of this thesis.

1
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We discuss memory subsystem issues related to the performance of high throughput

servers. This discussion motivates the primary question that this thesis investigates:

how on-chip cache, main memory, and disk can become significant performance bot-

tleneck for high throughput servers in the context of network infrastructure appli-

cations.

1.1 High Throughput Servers

Growing use of the Internet requires high performance servers for such applica-

tions as World Wide Web (WWW) and real-time multimedia applications. Web

servers, streaming servers, and software routers (henceforth, collectively termed as

high throughput servers) are essentially high performance transaction processing

engines that normally serve a large number of clients. The continuous growth of

the Internet makes high throughput demands on these servers even more stringent;

hence the performance of these servers must meet up with the demands in today’s

Internet applications and large number of clients.

1.1.1 Server Performance Issues

Due to growing interest in the development of novel technologies targeted at com-

merce and other critical applications, the performance of high throughput servers

has become a key aspect in the design of information infrastructure. The objective
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is to fulfill the growing requirement of offering access to an ever increasing volume

of requests for information consisting of text, image, audio, and video from a large

number of clients distributed across the Internet. Similarly, since its introduction

in early 1990s, the concept of streaming media has experienced a dramatic growth

and transformation from a novel technology into one of the mainstream manners

in which people experience the Internet today. Indeed, such growth would not be

possible without adequate progress in the development of various core technologies

utilized by streaming media software and hardware.

Streaming servers need to retrieve media components in a synchronous fash-

ion. These servers deliver live or on-demand audio or video content to potentially

thousands of clients distributed across the Internet. Because of the stringent tim-

ing and quality-of-service requirements, high-bandwidth demands, and the CPU and

memory intensive characteristics of these applications, the performance of the server

hardware is critical for efficient performance and delivery of high quality multimedia

contents.

Proxy server usage is growing and caching proxies have gained widespread de-

ployment on the Internet. Frequent requests for a small number of popular objects

have made caching highly successful in reducing server load, network congestion,

and client perceived latency [1]. While most of the caching research to date has

focused on caching of textual and image objects, streaming proxies are becoming

increasingly popular. Caching streaming media objects with proxy servers poses
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many new performance challenges [2]. The key challenge in designing such proxy

servers is that they need to deal with heterogeneity in data characteristics as well

as heterogeneity in the service requirements of applications.

1.1.2 Memory Hierarchy

There has been tremendous progress in microprocessor technology that leads to

high speed CPUs. Also, advances in memory and magnetic disk technology have

significantly improved memory and magnetic disk densities. However, memory and

disk access and cycle times have lagged far behind improvements in their densities.

Density of semiconductor DRAM and magnetic disks increase by approximately 50 -

60% per year, quadrupling in three years, but cycle time has improved very slowly,

decreasing by about one-third in 10 years [3].

To alleviate the problem of widening performance gap between processor and

main memory, computer architecture incorporates a hierarchical memory system in

which data caches are widely used for hiding memory latency. Memory hierarchy

is based on the principle of locality of reference – temporal and spatial. Temporal

locality states that recently accessed data are likely to be accessed in the near future

while spatial locality means that data whose addresses are near one another tend

to be referenced close together in time [3]. Caches go a long way in improving

performance for applications with small working data sets and large amounts of

spatial and temporal locality. Often a small cache can provide enough storage to hold
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most of the useful data required by the program at any time during its execution.

If an application code is not tuned to exploit these locality characteristics, it may

fail to achieve desired performance improvements.

1.2 Problem Statement

With current technology trends where processor-memory speed imbalance remains

wide, tuning a program’s memory performance has become increasingly important.

Many research efforts have focused on improving the cache performance of scientific

programs that use arrays as their primary data structure. Unfortunately, these

techniques do not directly apply to high throughput servers. It is obvious that

memory and disk overheads can inhibit the performance of any busy high throughput

server. In this work, we are interested in the memory performance evaluation of high

throughput servers to determine the specific conditions under which on-chip cache

or memory becomes a major performance bottleneck for the server. Identifying

these conditions is essential and will serve as a bed-rock for server design. This

initial step will result in alleviating memory bottleneck and lead to improvement in

overall performance. An efficient high throughput server must possess the following

characteristics:

• Delivery of high throughput;

• Serve client transaction with minimal latency; and
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• Responds to a large number of clients.

Memory performance issue in high throughput servers is a difficult problem for

many reasons such as large amounts of data flowing through the CPU and memory

system, mostly decreasing overall cache hit ratios and leading to a lot of memory

copying. Writing code to optimize memory usage is also a complex task because of

the nature of the data handled by these servers, which is difficult to tune for effective

cache performance, since such data is hardly reusable and often the working set is

large.

1.3 Contributions of this Work

This thesis addresses the memory performance problem that inhibits the perfor-

mance of high throughput servers. The following are the major contributions of this

thesis:

• Cache overhead analysis of various types of high throughput servers by static

analysis and measurement-based experiments.

• Memory latency and bandwidth analysis and their impact on server through-

put.

• Measurement-based performance evaluation of three representative network

applications, namely web servers, streaming media servers, and software routers
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involving Internet Protocol (IP) forwarding on general purpose computing

platform.

• Design, implementation, and evaluation of a prototype streaming server, named

Double Buffer RTP (DB-RTP) server.

These contributions are important for the state-of-the-art servers. For instance,

understanding the role of memory performance on high throughput will give insight

to a better design consideration. Addressing misconception of cache overheads for

high data rate applications on general-purpose computing platform is also an essen-

tial design issue that must be addressed. Latency hiding is a viable work-around on

the memory latency problem that can boost performance of applications.

1.4 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 provides background of

high throughput servers, their performance tuning needs, evaluation methodologies,

and related work. In Chapter 3, we analyze memory access pattern of network

applications and calculate performance bounds based on cache and memory models.

Chapter 4 reports our measurement-based memory performance study of key high

throughput servers: streaming media servers, web servers, and software router for

IP forwarding on general purpose computing hardware. In Chapter 5, we outline the

design of our prototype streaming server that addresses some memory performance



8

issues. We also report our performance evaluation of the prototype RTP server that

incorporates latency hiding. We finally draw conclusions about this research effort

and outline the future direction of this work in Chapter 6.



Chapter 2

Background and Related Work

2.1 Introduction

Performance tuning of servers, especially those that are required to deliver high

throughput is essential to meet up the demand of increasing number of clients re-

quiring fast and efficient service. Servers that cannot deliver clients’ request with

acceptable quality of service (QoS) are likely to incur business lost.

In this chapter, we discuss background issues related with high throughput

servers, their performance tuning and some design considerations to boost perfor-

mance, and review related work in the literature focusing on high throughput servers

and memory performance improvement techniques.

9
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2.2 Server Performance Tuning

High throughput servers are often based on general-purpose computing platforms.

Performance tuning is one of the basic design and deployment activities for these

servers. In this section, we present the server performance tuning issues with re-

spect to memory performance, latency hiding, multithreading, multiprocessing and

clustering, and special architectures.

2.2.1 Memory Performance Tuning

Code transformation has been used intensively to improve memory performance [3].

Compiler controlled memory performance optimizations rely on source code analysis

to identify target code blocks that can be transformed to improve data reuse. The

objective of this process is to reduce the cache miss rate by improving data locality.

We briefly review some popular techniques in this regard.

Array Padding

Since cache line sizes are often equal to a power-of-two value, array dimensions that

are also a power-of-two cause unnecessary conflicts to occupy identical cache lines.

Although a set-associative architecture reduces the contention due to multiple sets,

the severity of the problem remains significant for larger applications due to a large

number of memory accesses to an equally large number of arrays. A commonly used
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technique to solve this problem is to pad the arrays to increase their dimensions by

one [4]. Figure 2.1 shows an example of array padding in the declaration of an array,

while the rest of the application code remains unchanged.

float rgbFrames [64][64][64][8]

Original code

float rgbFrames [65][65][65][9]

Transformed code

Figure 2.1: An example of using array padding to reduce conflict misses.

Array Restructuring

Minimization of strides of array references improves cache utilization. Unfortunately,

there is no particular method of minimizing strides that can be applied in general

to any given code. Array dimensions could be restructured so that the array ele-

ments that are used one after the other are stored in contiguous memory locations.

Figure 2.2 shows the array declarations with their dimensions modified from the

original code. The rest of the code remains unchanged.



12

float rgbFrames [64][64][64][8]

Original code

float rgbFrames [8][64][64][64]

Transformed code

Figure 2.2: An array restructuring example to store the sequentially accessed data
in contiguous memory locations.

Loop Nest Transformations

Loop nest transformation is another technique that can be used for stride mini-

mization. With a nested loop, it is best to design the loop nest in such a way that

subsequent memory access hit in contiguous locations or with small strides. Fig-

ure 2.3 presents an example of an original as well as modified code segment with

loop nest transformations and array restructuring to minimize strides. In order to

make such a transformation, the loop body needs to be analyzed to ensure that ar-

ray accesses are independent of various loop indices to allow transforming the nest

without changing the end result.

Reducing the overall memory consumption by an application decreases the over-

all cache misses. Blocking is another technique, which is often used to improve

temporal locality. In blocking, instead of operating on entire rows or columns of an

array, blocked algorithms operate on submatrices or blocks with a goal of maximizing
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float rgbFrames [8][64][64][64];

float yuvFrames[8]64][64][64];

int i, j, k, l;

for (i=0; i<64; i++)

  for (j=0; j<64; j++)

    for (k =0; k<64; k++)

      for (l=0;l<8; l++)

          yuvFrame[l][i][j][k] = rgbFrames [l][i][j][k]

float rgbFrames [8][64][64][64];

float yuvFrames[8]64][64][64];

int i, j, k, l;

for (l=0; l<8; l++)

  for (i=0; i<64; i++)

    for (j =0; j<64; j++)

     for (k=0;k<64; k++)

        yuvFrame[l][i][j][k] = rgbFrames [l][i][j][k]

Original code

Transformed code

Figure 2.3: An example of loop nest modification with array restructuring to mini-
mize strides.

accesses to the data loaded into cache before the data is replaced [3].

2.2.2 Latency Hiding and Multithreading

As memory access speed remains a technology issue that is unlikely to be resolved in

the near future, several techniques are used to circumvent the latency constraints.

One key technique is hiding memory access latency by implementing parallelism.

Novel architectures and enhanced compilers could be used where a a processor can

utilize the parallelism information to execute a large number of memory opera-

tions concurrently. For example, in multithreaded applications, when one thread is

blocked due to memory latency, (e.g., a cache miss) or synchronization delay, the

hardware switches to issuing instructions from another thread within a couple of
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clock cycles [5].

Some explicitly parallel architectures that are capable of providing memory la-

tency hiding are [5]:

• EPIC (IA-64) [6]: It exposes parallelism information to the hardware using

very long word instructions (VLIW).

• VIRAM [7]: Expresses parallelism to hardware in the form of vector opera-

tions.

• Impulse [8]: Allows software to describe regular memory access patterns di-

rectly to the memory controller.

2.2.3 Multiprocessing and Clustering

Multiprocessing and clustering have been used in several applications to boost server

performance. In fact, major web servers work in clusters or involve multiprocessor

architectures. An example of a cluster implementation to boost performance is the

Panama cluster router [9]. It includes a cluster of PCs connected by a high speed

system area network. Panama has a decoupled system architecture that separates

packet forwarding and packet computation paths. It derives performance improve-

ment from parallelization of these tasks on the cluster.
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2.2.4 Specialized Architectures

Another trend in server performance tuning is to employ special-purpose architec-

tures that are specifically designed for a particular application. A typical example is

a network processor. A network processor is a special-purpose programmable hard-

ware specifically designed for network systems and applications [10]. Other special

purpose architectures include ASICs (application specific integrated circuits) and

data flow architectures. All specialized architectures have some common features

that help them deliver high performance for their applications. These features in-

clude: flexibility through programmability, optimized architecture for specific target

applications, and scalability with parallelism and pipelining.

2.3 Examples of High Throughput Servers

Due to a large number of users on the Internet, content distribution servers on

the Internet are subjected to high traffic throughput and acceptable QoS demands.

Some popular network core and edge applications on the internet today are: web,

proxy, streaming servers, and routers. In this section, we review the design and

performance issues relevant to these high throughput servers.
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2.3.1 Web Servers

The purpose of a web server is to provide documents to WWW clients when they

request for them. A web server operates in the following way. The server listens on

a designated port (usually port 80) for a request from a WWW client to establish

a TCP connection. Once a TCP connection is opened and the client has made its

request, the server must respond to that request. The response includes a status

code to inform the client if the request has succeeded or not. If the request is

successful, a document is usually returned with the response. If the request is not

successful, a reason for the failure is returned to the client.

2.3.2 Streaming Servers

An important issue in multimedia information systems, particularly for serving video

and audio contents, is QoS guarantee. Streaming media servers better address this

issue than web servers. To offer quality streaming services, servers are required

to process and transmit data under timing constraints. A streaming media server

typically consists of three subsystems, namely, a communicator (e.g., transport pro-

tocols), an operating system, and a storage system [11]. The operating system

manages the essential resources, such as the CPU, main memory, storage, and all

input and output devices. Since resources are limited, the server can only serve a

limited number of clients with requested QoS. Therefore, resource management is
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required to properly accommodate timing requirements.

2.3.3 Proxy Servers

A WWW proxy is an application program that accepts requests from a set of clients,

forwards these requests to the appropriate servers (if required), and sends the re-

quested data back to the clients. While receiving and serving requests from the

clients, the proxy functions as a server. On the other hand, while forwarding re-

quests to the origin servers, the proxy functions as a client. The proxies store fre-

quently requested objects close to the clients in the hope of satisfying future client

requests without contacting the origin servers. By keeping local copies of objects

requested by clients, and using them to satisfy future requests for the same objects,

caching proxies can reduce the amount of traffic flowing between clients and the

origin servers. Proxy servers at the edges of networks are usually subjected to high

transaction loads. Figure 2.4 depicts a typical proxy server setup.

Proxy server

Internet/Intranet

Web clients

Internet/Intranet

Web server
(origin server)

Figure 2.4: Proxy server setup consisting of an origin server, wide-area network, and
edge of a network.
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2.3.4 Software Routers and IP forwarding

Routers are network devices used at edges as well as core, responsible for routing and

forwarding of packets. While routing is the process of building a routing table using

one or more routing algorithms, forwarding is the process of moving a packet from

an input port to an output port based on the destination of the packet. Forwarding

is achieved in consultation with the routing table.

Decreasing cost of general-purpose computing hardware and their increasing

performance has begun to attract researchers to consider the deployment of these

general-purpose hardware for IP routing and forwarding purposes. IP packet for-

warding is described in RFC 1812 [12]. The following steps are involved in forwarding

an IP packet:

• Verify the header checksum. If cannot verify correctness, drop the packet

without any further action;

• Check for IP options;

• Look up the destination address in the forwarding table and decide which

output port packet should go;

• If no route is found, return ICMP Destination Unreachable;

• If the router itself (typically its control processor) is the packet’s final desti-

nation, deliver it;
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• Verify that the packet’s time-to-live (TTL) is > 0. If check fails, return a

(possibly rate-limited) ICMP error message (“Time exceeded”);

• Decrement TTL;

• Update the header checksum (if done in an error-preserving way, the initial

verification can be skipped);

• Verify whether the MTU of the outgoing interface is large enough; if not,

fragment; and

• Send the packet to the appropriate output interface as determined by the

forwarding lookup.

Four most important performance issues related to router performance are: (i)

use of interrupts, (ii) bus bandwidth, (iii) speed of the CPU, and (iv) bandwidth

of the memory. Time taken to process interrupts can be quite significant for high

performance routing. Any amount of time taken between hardware generating an

interrupt and reading relevant data is a direct contributor to latency within the

router. Bus bandwidth in the router host is very important. The machine bus is

the common communication channel that nearly all hardware components use to

communicate. When attempting to route between a number of separate devices,

it is possible for the bus to become a performance bottleneck due to contention.

The CPU can also be a performance bottleneck especially when there is a lot of
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processing due to firewall or NAT (network address translation) rules [13].

2.4 Evaluation Methodologies

System performance evaluation falls under one of the following methodologies: static

analysis, simulation or measurement. In static analysis, mathematical equations

representing a model of the system can provide insight on performance, especially

bounds (lower or upper limits on performance). In static analysis, mostly accuracy

is compromised to some extent for simplicity. Trace driven simulation technique is

well-known for designing and analyzing processor caches. Instrumented applications

are executed to obtain a trace of all memory accesses (load and store addresses with

or without size of data transfer) in a benchmark program. This trace is consumed

by a simulator that can predict the cache performance of a new architecture whose

design parameters, such as cache line size, degree of associativity, capacity, etc.,

can be evaluated under such workload. Unlike the other two methods, measure-

ment requires an existing system or a prototype. Measurement based evaluation

provides the most realistic assessment of system performance and behavior, though

it takes more time and is likely to be more expensive. Processor on-chip counters

are frequently used to capture low level measurements of metrics like cache misses,

instruction cycles, etc.
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2.5 Related Work

In this section, we provide an overview of related work in the literature. We discuss

research efforts towards improving memory performance using several techniques

such as improving cache miss rate and use of memory compression. We also review

work on performance evaluation of high throughput servers and video server design

issues. We finally discuss work on routing and IP forwarding on general-purpose

computing platform.

2.5.1 Improving Memory Performance

Improving cache miss rate has significant impact on memory system performance

since high miss penalty will be minimized. Another approach for improving memory

speed is by increasing the bandwidth, which will effectively improve memory access

latency. Compressing memory pages minimize the tendency of swapping such pages

to disk, hence minimizing slow disk access by keeping the compressed page in mem-

ory.

Performance of Cache and TLB

The most important performance parameters of a memory hierarchy are cache miss

latency, TLB (Translation Lookaside Buffer) miss latency, and effective data path

parallelism [14]. The substantial research efforts on improving the performance of
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cache, memory, and TLB shows the extent of their importance. So many tech-

niques have been proposed in the literature for improving cache performance by

either reducing miss rates or miss penalty . Techniques for minimizing cache miss

rate include use of larger cache block size and large cache capacity, higher asso-

ciativity, use of victim caches, implementing pseudo-associative caches, hardware

prefetching of instructions and data, compiler-controlled prefetching and compiler

optimizations [3]. Cache miss penalty could also be reduced by: (1) giving pri-

ority to read misses over write misses; (2) use of early restart and critical word

first; (3) use of nonblocking caches to reduce stalls on cache misses; and (4) use of

second and third level caches [3]. Not surprisingly, most of the research efforts on

improving cache performance are on numerical applications [15, 16, 17, 18]. Few

cases have been reported on the study and optimizing cache performance for other

applications like database systems [19, 20, 21, 22, 23]. Cache misses could be repre-

sented analytically, providing a general framework to guide code optimizations for

improving cache performance. Cache miss equations have been used to determine

array padding and offset amounts that minimize cache misses [24]. High throughput

servers will benefit from some of these techniques like nonblocking caches that will

reduce stalls on cache misses and use of larger cache block size since working set for

the servers are mostly large.
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Improving Main Memory Performance

Since reducing latency of memory has been a slow process, it is generally easier to

improve memory bandwidth with novel organizations than it is to reduce memory

access latency. Several techniques have also been reported in the literature for

improving memory bandwidth . These techniques include (1) wider main memory,

(2) simple interleaved memory to take advantage of the potential parallelism of

having many DRAMs in a memory system, (3) independent memory banks that

will allow multiple independent accesses, (4) avoiding memory bank conflicts, and

(5) DRAM-specific interleaving [3]. High throughput servers that require transfer

of large block of data will benefit from a wider main memory, effectively minimizing

memory access latency. The parallelism inherent in memory interleaving is also good

for these servers.

System Software Modifications

Several memory performance tuning approaches are based on modifying operating

system, compiler, or even application source code. Recent work on memory perfor-

mance tuning has proposed compressing memory pages in preference to swapping

them out to disk [25, 26, 27, 28, 29]. The goal of memory compression is to hide

the disk latencies by storing swapped out page frames in a compressed form, while

residing in physical memory. On a subsequent page fault, the page can be quickly

decompressed and supplied to the application program. Roy et al [30] implemented
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a compressed memory on a Linux operating system. Their implementation is in the

form of a loadable device driver, which can simply be unloaded for those applications

that do not benefit from memory compression. The implementation shows speed-

ups ranging from 5% to 250% on SPEC 2000 benchmarks and computational kernel

applications. Researchers working on the Impulse Project [31, 32] introduced an

optional level of address translation at the memory controller. This feature exploits

“unused” physical addresses that can be translated to “real” physical addresses at

the memory controller. Using Impulse requires modifications to applications (or

compilers) and operating systems, but requires no hardware modifications to pro-

cessors, caches, or buses. Impulse can reportedly speed-up a range of applications

from 20% to over a factor of 5. Memory compression may not be a suitable alter-

native for high throughput servers since reusability of data is minimal. Keeping a

compressed data in memory that is likely not be used again is not an advantage.

2.5.2 Performance Evaluation of High Throughput Servers

We present performance evaluation methodologies and performance analysis of high

throughput servers. We outline some video server design issues. We similarly review

research efforts on software routing and IP forwarding on general-purpose computing

platform.
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Streaming Media Servers

Performance of a streaming server is a key factor contributing to the quality of the

multimedia content for the end-users. Shenoy et al [33] highlighted some funda-

mental issues arising in multimedia server design. Technical challenges in design

such as storage and retrieval of multiresolution data, scalability and management

were presented. Sohn et al [34] evaluated the performance of a small-scale Video

on Demand (VOD) server. They conducted a measurement-based study in which

they outlined the predictability of the real-time scheduler and the performance of

the VOD server. Results of the performance measurements showed that the net-

work protocol processing is a source of non-predictability. They found that high

performance processor should be used to process the network protocol. However,

the performance of the storage system was not a problem to the VOD service.

A significant amount of work is reported in the literature on the disk storage

performance for streaming media servers. Due to large volumes of video and other

multimedia content, storage and retrieval techniques play an important role in the

performance of the server. A storage hierarchy to design a low-cost cache for a movie

on demand (MOD) server was proposed in [35]. The hierarchy consists of a disk,

which stores the popular movies, and a small amount of RAM buffers that store

only part of the movies. Due to low cost of disks, the cost of a MOD server based on

the proposed architecture is substantially lower than one in which the entire movie
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is loaded into RAM. Another multimedia architecture and data retrieval model for

supporting simultaneously multiple clients requesting files of different playback rates

is presented in [36]. The performance of the architecture was investigated using a

circular SCAN disk scheduling policy in terms of the maximum number of concurrent

video streams it can support.

Some studies of multimedia servers pay attention to I/O subsystems due to

high throughput demand of the servers. In fact, streaming media servers are often

I/O bound. A study focused on the design of an I/O subsystem for a continuous

media server is reported by Weeks et al [37]. They proposed several improved

architectures based on an existing device: Intel i960RP I/O processor, and evaluated

their performance. They reported that utilization of the I/O processor solved the

main memory bottleneck problem, but created a new bottleneck in i960RP memory.

I/O performance in multimedia servers has also been investigated using simulation

[38]. Various I/O issues in multimedia systems have been discussed in [39], focusing

on disk scheduling, SCSI bus contention and effect of buffer space on the performance

of real-time requests and aperiodic requests.

Rixner [40] proposed the Imagine architecture for streaming media processor,

which delivers a peak performance of 20 billion floating-point operations per second.

Imagine efficiently supports 48 arithmetic units with a three-tiered data bandwidth

hierarchy. At the base of this hierarchy, streaming media system employs memory

access scheduling to maximize the sustained bandwidth of external DRAM. At the
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center of the hierarchy, global stream register file enables streams of data to be

recirculated directly from one computation kernel to the next without returning

these data to memory. Also, local distributed register files that directly feed the

arithmetic units enable temporary data to be stored locally so that it does not

consume costly global register bandwidth. The bandwidth hierarchy enables Imagine

to achieve up to 96% of the performance of a stream processor with infinite memory

bandwidth from memory and the global register file.

Design of Video Servers

Several designs and architectures of video servers have been reported as improving

one or even some aspect of performance of the servers. Bulk of the work however

addresses the issue of storage and disk performance. Issues in multimedia server

design are presented in [33].

The fundamental design issue is that of addressing quality of service constraints

like delay, jitter and packet loss while also enhancing the capability of the server

to handle large number of concurrent streams of video. Table 2.1 outlines some

techniques in the design of video servers.
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Table 2.1: Some design issues in media storage and retrieval techniques.

Techniques References

Media storage

Data striping [41, 11]
Hierarchical storage [11]
Fault tolerance [42, 43, 44, 45, 46]

Media retrieval

Buffering [47, 48]
Caching [49, 47]
Batching [50, 51]

Web and Proxy Servers

Web servers are key part of the Internet infrastructure today since web traffic ac-

counts for substantial proportion of the traffic on the Internet. There has been

tremendous amount of work on web servers ranging from performance studies to

workload characterization [52] and even security issues [53, 54]. But just like the

case of streaming media servers, there is no significant work on the performance of

cache and memory subsystem. Iyengar et al report [55] performance study focused

on improving the performance of the web server in the situation where the CPU

becomes the limiting resource. In [56] a new web server mechanism was reported.

JAWS was designed as an object-oriented web server that was explicitly meant to

alleviate the performance bottlenecks identified in existing web servers. The per-

formance optimizations used in JAWS included adaptive pre-spawned threading,

intelligent caching, and prioritized request processing. Performance results were

presented showing the scalability and efficiency of the proposed design. This is an

attempt to improve the performance of the web server itself and not the underlay-
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ing hardware.

Comparative performance characteristics are often studied using web server bench-

marking tools. A measurement based performance study of Apache and Microsoft

Internet Information server is reported in [57]. Their study focused on comparative

performance on same hardware, but no attention was paid on the impact of the

underlaying hardware. Trecordi and Verger [58] studied the main factors affecting

the performance and scalability of web servers. They take into account the impacts

of the server software architecture, operating system and the underlaying server

hardware. They reported numerical results that reveal that the performance and

scalability of WWW servers heavily depend on a lot of parameters that should be

properly tuned. Although this study discussed cache and virtual memory system, no

measurement on any metric related to the cache and virtual memory was reported.

2.5.3 Software Routing and IP Forwarding

There is a renewed interest in software based routers. These routers are hosted on

PC platforms. A software router provides the flexibility of supporting value-added

services, such as firewalls, differentiated services, load-balancing, etc., in addition to

routing and forwarding IP datagrams. The main challenge is to achieve line speeds

like hardware routers by eliminating any performance bottlenecks. Simple nature of

IP forwarding transactions is another reason why many researchers are working on

software routers.
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Click [59, 60] provides a software architecture for building flexible and config-

urable routers. The design of this framework is highly modular in which individ-

ual elements implement simple router functions like packet classification, queueing,

scheduling and interfacing with network devices. When elements are connected into

a graph, a complete configuration is formed with packets flowing along the graph’s

edges. Click’s power comes from two specific features: pull processing and flow-based

router context. The former models packet motion driven by transmitting intefaces

and makes packet schedules easy to compose, while in the case of flow-based router

context, the router graph is examined to help an element locate other interesting

elements. The authors reported an implementation on a general purpose hardware.

A Click IP router running on a 450 MHz Pentium III with Linux 2.2.10 can forward

73,000 64-byte packets per second and 250-byte packets at 100 megabits per sec-

ond. An interesting aspect of Click is that it can both be implemented in operating

system user and kernel space.

A performance model and simulation study of a PC based IP software router was

reported in [61]. The model is an open multiclass priority network of queues, which

was evaluated through simulation. The model estimated probability distribution

function of packet latency. The validity and accuracy of the multiclass model was

established by comparing both packet processing latency traces and their comple-

mentary cumulative probability functions. Though simulation might not capture

several important aspect of software and hardware interaction in real implemen-
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tation of such routers, the multiclass model is capable of estimating the packet-

processing latency of a PC based IP software router at several levels of detail. This

makes the multiclass model suitable for capacity planning of PC based IP software

routers expected to support Quality of Service. Other studies of software routing

and IP forwarding on general purpose hardware and custom hardware are reported

in [62, 63].



Chapter 3

Analysis of Memory Accesses

3.1 Introduction

Analytical model provides us quick means to calculate expected performance num-

bers. With some simplification assumption, it is possible to compute performance

values, which we can compare with measurement based values.

In this chapter, we use simple analytical model to abstract resources related to

data movement in a typical transaction and we obtain throughput optimistic bounds

for representative network applications: HTTP, RTP and IP forwarding. We com-

pare these throughput with corresponding throughput obtained using measurement

to capture CPU overhead.

32
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3.2 Data Flow Issues

The architecture of a general purpose processor based computing platform is shown

in Figure 3.1. Hardware resources on such a server include: processor, on-chip

and/or off-chip low latency caches, main memory, one or more disks, and one or

more network interfaces. The hardware resources are connected to one another

through a high-bandwidth internal system bus, a low-bandwidth I/O bus, and a

bus controller. In terms of data flow, both within as well as outside the server,

there are four data transfer paths. These paths include: (1) CPU-memory data

transfer of operands for operations that utilize CPU time for arithmetic and/or

logical instruction executions; (2) memory-memory data transfers (that go through

CPU) for copying blocks of data from one network protocol layer to another; (3) disk-

memory data transfers through Direct Memory Access (DMA) for retrieving or

storing large data; and (4) network interface-memory data transfers through DMA

for incoming or outgoing data through the network. While the first and the second

types of data transfer use internal bus, the third and fourth types of transfer utilize

I/O bus.

3.3 Latency Model and Memory Overhead

Transactions performed by a typical network infrastructure server can be character-

ized by three activities: (1) reading an incoming transaction request from a memory
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interface

Network
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Disk
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Disk transfer via DMA

Network transfer via DMA

Memory-memory transfer via CPU

Cache-memory transfers

Figure 3.1: Architecture of a typical server built on a general-purpose platform with
four data transfer paths.
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location (network buffer) through a network interface; (2) request processing that

requires CPU time; and (3) writing the response to a memory location (a network

buffer) that results in outgoing data transfer through network interface. These

activities are not necessarily performed in the same order. Also, one transaction

may involve multiple operations of each one of the above three general categories

of operations. The above discussion of hardware and software resources of a typical

server allows us to consider all non-CPU operations as memory accesses of three

types: (1) memory-CPU (or cache) transfers; (2) memory-memory transfers; and

(3) memory-I/O and/or memory-network transfers. In the rest of this section, we

determine the latencies due to each of these memory access operations.

3.3.1 Memory-CPU Transfers

Part of a network transaction utilizes CPU cycles for functions such as: decre-

menting time-to-live of an IP packet, computing checksum for an IP packet header,

computing retransmission time-out value for a TCP segment, computing checksum

of a TCP segment, etc. Not all of these computations require transferring every

word of the PDU to the CPU from memory in a sequential order. Some protocol

processing functions require updating a protocol header, which consists of a small

number of bytes. However, some operations such as checksum calculation of an en-

tire Protocol Data Unit (PDU) (e.g., a TCP segment) require sequential access to a

contiguous block of memory locations. Due to multiple levels of memory hierarchy,
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these contiguous data blocks are first transferred to cache from where CPU can ac-

cess them. This process involves several memory stall cycles that contribute to the

transaction latency. Memory stall cycles can be measured in terms of miss rate for

an application [3], such that:

Memory stall cycles = (IC)(AR)(MR)(MP ) (3.1)

where IC represents instruction count, AR specifies memory access rate in terms

of the number of memory accesses per instruction, MR is the miss rate, which is

the ratio of cache misses to memory accesses, and MP specifies miss penalty in

terms of clock cycles. Considering only data cache misses, we can further simplify

the expression for memory stalls by assuming that each instruction includes one

memory access, that is AR = 1. Then we can re-write the above expression as:

Memory stall cycles = (IC)(MR)(MP ) (3.2)

Using this expression, we can calculate the memory stall cycles through measure-

ments to determine IC and MR while MP is known for every level of memory

hierarchy. In order to get further insight into memory stalls, we can use the general

observation that access to each subsequent level of memory hierarchy is slower by

one order of magnitude. If access to L1 cache takes one clock cycle, we can assume

that penalty for an L1 cache miss will be of the order of 10 clock cycles, which is
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true for several processors. Since miss ratio MR is dependent on application char-

acteristics, we can further analyze it by focusing on network applications. In the

worst case, MR = 1 and using MP = 10, the number of memory stall cycles will be

10 times of IC (i.e., ten stalls per instruction), which is quite high. However, the

situation is not as bad for network applications. Unlike computational applications,

network PDUs do not contain repeatable data. Therefore, temporal locality does

not exist in such data. However, contiguous data are accessed as a block (with a

stride of 1) and spatial locality does exist. For instance, if an L1 data cache con-

sists of 16 words (or 32 bytes), loading one word to a cache line will also bring 7

contiguous words into the cache that are to be used subsequently. Thus, effective

value of MR = 1
16

or 6.25% in this case. Memory stall cycles will be very close to

the instruction count in such a case. Generally, MR = 1
( L

W
)

= W

L
where W is the

width of each memory access (in bytes) and L is the length of each cache line (also

in bytes). One important issue that needs to be analyzed is the role of caches for

high-throughput network applications.

It is commonly believed that due to lack of temporal locality in network PDUs,

data caches introduce unnecessary delays. It will be useful to calculate the exact

amount of overhead introduced due to caches. One way to specify this overhead is

to calculate the ratio of execution times (in terms of clock cycles) with and without

a cache (or with no memory stall cycles). Execution time without cache can be

expressed as:
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(Execution time)no−cache = (IC)(CPI)(CC) (3.3)

where CPI represents average clock cycles per instruction and CC is the clock

cycle time. Execution time with cache will result in memory stalls and can be given

as:

(Execution time)with−cache = (IC)(CPI)(CC)(1 + (MR)(MP )) (3.4)

Thus the overhead of having a cache for a network application can be calculated as

a ratio of two execution times as:

Cache overhead = 1 + (MR)(MP ) = 1 + (10)(MR) (3.5)

In the worst case, MR = 1 and cache will result in 11 times higher latency than an

architecture that simply uses a fast memory without a cache. This rare case may

occur when stride is such that every memory access results in a cache miss. Under

such a worst-case scenario, latency of transferring a PDU from memory to CPU is

determined by the bandwidth of the internal bus. The best case when MR = 0 is

trivial and corresponds to transactions that do not involve any memory accesses. In

such cases, cache does not introduce any additional latency. A more practical case

occurs when MR is non-zero and typically close to 0.1. In such cases, the product
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(MR)(MP ) approaches 1. That is, in practice latency introduced by a cache is as

much as the ideal execution time without memory stalls. Therefore, using a general-

purpose processor based server architecture may restrict the average throughput to

half of what would have been possible in a special-purpose architecture without a

data cache.

For the case where the PDU is copied from the memory to the CPU and if there

is no contention for the bus, such transfer is simply limited by the bandwidth of

internal bus. If the internal bus has a bandwidth of Bi MBytes/Sec and the cache

line is 32 bytes, the latency to copy a block of S bytes is given as:

Memory − CPU latency =
S

32Bi

µsec (3.6)

3.3.2 Memory-Memory Transfers

Protocol processing typically involves copying a block of contiguous (stride = 1)

memory locations to a different location to pass a protocol data unit to the subse-

quent layer. If there is no contention for the bus, such transfers are simply limited by

the bandwidth of internal bus. If the internal bus has a bandwidth of Bi MBytes/Sec,

the latency to copy a block of S bytes is given as:

Memory − memory latency =
2S

Bi

µsec (3.7)
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Current generation of general-purpose processor based server architectures are ca-

pable of transferring multiple GBytes/Sec over the internal bus. For instance, a

2 GHz Pentium IV processor can allow up to 4 GBytes/Sec of data transfer over

its internal bus. This is equivalent to 32 Gbits/Sec of data transfer rate within the

server.

3.3.3 Memory-I/O and Memory-Network Transfers

Both I/O and network operations involve data movement over the I/O bus through

a bridge. Therefore, both types of operations are similar from data transfer perspec-

tive. Every transaction starts and ends at network interface card (NIC), which is

connected to the I/O bus. The I/O bus is typically slower compared to the internal

bus. If bandwidth of the external bus is Be MBytes/Sec, latency to pass a PDU of

S bytes is given as:

Memory − network latency =
S

Be

µsec (3.8)

Both I/O and network operations use DMA controller to transfer data to or from

memory without involving the processor.
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3.4 Reference Applications

This thesis focuses on three high throughput network infrastructure applications:

streaming media servers, web servers, and software routers. We apply memory la-

tency calculations to these applications. We are interested in calculating the laten-

cies of transactions of these three applications running on general-purpose processor

based servers. Our goal is to identify the frequency of each of the four types of

data transfer operations for every transaction. We assume that the latency of a

transaction is the sum of the following latencies: processing by CPU, memory-CPU

transfer, memory-memory copy, memory-NIC transfer, and memory-I/O transfer.

3.4.1 RTP Transaction Latency

Compressed video and audio transmission over the Internet uses streaming to al-

low the receiver to playback chunks of entire document as they arrive. Real Time

Protocol (RTP) is used in conjunction with Real Time Control Protocol (RTCP) to

deliver streaming media content. A streaming media server can store the content

on the disk in multiple chunks that can be streamed on demand from a client af-

ter appending an RTP header to each one of them. Streaming is not restricted to

transmission of stored audio or video only. It may also include live audio/video as

well as other interactive applications, such as video conferencing. However, to keep

our focus on high throughput streaming servers, we consider the case where chunks
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of data are available in the main memory from where they can be streamed to the

requesting client by appending RTP headers.

A complete streaming transaction has two parts: a request and a response that

streams multiple RTP packets. As most of the data transfer is due to streaming

of RTP packets, the request part is simply irrelevant to our calculations. Response

part consists of several RTP packet transfer transactions. Each RTP streaming

transaction consists of following operations:

1. Formation of an RTP packet consisting of a header and a chunk of compressed

audio/video data frames. This RTP packet is copied to the transport layer

(often using UDP rather than TCP). This involves one memory-memory data

transfer.

2. Calculation of UDP (the same applies to TCP) segment checksum requires

entire segment to visit CPU (word-by-word, sequentially) through cache. Thus

there is one memory-CPU data transfer for entire transport layer PDU.

3. Transport PDU is copied to an IP buffer. This operation involves one memory-

memory data transfer of entire PDU.

4. Finally, the IP packet is handed over to the NIC resulting in one memory-NIC

data transfer.

Thus a typical RTP streaming transaction involves two memory-memory trans-

fers and one memory-network transfer. Therefore, latency of an RTP streaming
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transaction can be expressed as:

TRTP = TCPURTP
+

S

32Bi

+
4S

Bi

+
S

Be

(3.9)

where TCPURTP
is the CPU time taken by the RTP transaction response (in mi-

croseconds) and S is the size of PDU (in bytes).

3.4.2 HTTP Transaction Latency

A typical HTTP transaction at a Web server consists of two parts: request and

response. Request part consists of a small HTTP command while the response

consists of a header and the requested document. We can ignore the request part as

its impact on overall transaction throughput is minimal. The rest of the transaction

involves the following operations:

1. Preparation to send requested document in an HTTP response with a header.

This response needs to be copied into a TCP buffer from HTTP. This process

involves one memory-memory copy.

2. Calculation of TCP segment checksum requires entire segment to visit CPU

(word-by-word, sequentially) through cache. Thus there is one memory-CPU

data transfer for entire transport layer PDU.

3. Transfer of TCP segment to an IP buffer. This operation results in a memory-
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memory transfer of entire PDU.

4. Finally, the IP packet is copied to the network buffer on the NIC resulting in

a memory-NIC transfer.

HTTP transaction operations result in one memory-CPU transfer, two memory-

memory transfers, and one memory-NIC transfer. Some CPU cycles are again

needed for processing the request and forming response. As stated above, we can

consider worst-case memory-CPU transfer with MR = 1 and latency is same as

memory-memory transfer limited by the internal bus bandwidth. Using this ap-

proximation, total latency for an HTTP transaction that need highest throughput

is given as:

THTTP = TCPUHTTP
+

S

32Bi

+
4S

Bi

+
S

Be

(3.10)

where TCPUHTTP
is the CPU time taken by the HTTP transaction response in mi-

croseconds and S is the size of PDU in bytes.

3.4.3 IP Forwarding Latency

An IP packet forwarding transaction involves the following functions:

1. Copying incoming PDU to a buffer in the IP layer. This results in a NIC-

memory transfer of entire PDU.
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2. Examination of IP header to extract the destination IP address. This operation

will result in copying IP header from memory to cache through a compulsory

cache miss. Due to typically small size of the IP header (typically 20 bytes), it

can completely fit in a cache line. A hash function is computed corresponding

to the destination IP address to look-up the routing table to determine output

port. This computation uses CPU cycles and can re-use the IP header from

cache.

3. Routing table look-up involves an access to memory. However, over time,

output ports corresponding to frequently encountered destination addresses

will already be in cache. But in the worst case, table lookup will result in a

cache miss and a memory-CPU transfer of typically one word.

4. IP header has to be updated such that time-to-live field is decremented and

header checksum is recomputed. Since IP header is already in the cache, this

function does not involve any additional latency.

5. Finally, the updated PDU with new header is transferred to the appropriate

network interface (based on routing information) from IP layer. This results

in a memory-NIC transfer of the entire PDU.

To summarize the entire transaction in terms of data transfers, there are two

memory-NIC transfers of the entire PDU. In addition, there are two cache misses

resulting in very small memory-CPU transfers. However, compared to memory-



46

memory transfers of entire PDUs, these memory-CPU transfers incur very small

overhead of a few cycles only and can be ignored for all practical purposes. Thus,

the total latency of each IP packet forwarding transaction can be given as:

TIP = TCPUIP
+

2S

Be

(3.11)

where TCPUIP
is the CPU time taken by the transaction in microseconds and S is

the size of PDU in bytes.

Transaction latencies can be used to calculate the throughput (in MBytes/Sec)

for a server running one of the three selected applications. Server throughput is given

by S

T
where S is the size of transaction data and T is the latency of a transaction

given by Equations 3.9, 3.10, and 3.11. In order to determine optimistic upper-bound

on throughput for these three applications, we can apply two approximations to the

latency expressions: (1) CPU usage latency compared to data transfer latency is

negligible and can be ignored, and (2) bus contention from multiple simultaneously

executed transactions do not result in any additional overhead. Then optimistic

upper-bound on throughput for each application (in MBytes/Sec) is given as:

(Throughput)RTP =
32BiBe

129Be + 32Bi

(3.12)

(Throughput)HTTP =
32BiBe

129Be + 32Bi

(3.13)
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(Throughput)IP =
Be

2
(3.14)

We can use these upper-bound throughput estimates for several leading general-

purpose microprocessors. These calculations are listed in Table 3.1. Using these

calculations, we can conclude that all of the leading microprocessor based systems

are capable of delivering more than 2 Gbytes/Sec throughput for all three appli-

cations. For high-end processors with high bandwidth internal system bus, the

external bus becomes a major bottleneck in delivering high throughput. Despite

this limitation, these upper-bound throughput estimates indicate that a general-

purpose processor based server can deliver high throughput comparable to a server

based on special-purpose architectures.

Table 3.1: Peak throughput of three network applications for leading general-
purpose processors with different internal bus bandwidth. The external (e.g., PCI)
bus is assumed to be 64 bits wide and operates at 133 MHz with a 1066 MBytes/Sec
bandwidth.

Throughput of three network
Processor Internal bus bandwidth applications

(MB/Sec) IP forwarding HTTP RTP Streaming
(Mbits/Sec) (Mbits/Sec) (Mbits/Sec)

Intel Pentium IV 3.06 GHz 3200 4264 3640 3640
AMD Athlon XP 3000+ 2700 4264 3291 3291
MIPS R16000 700 MHz 3200 4264 3640 3640
Sun Ultraspac III 900 MHz 1200 4264 1862 1862



Chapter 4

Measurement-Based Performance

Evaluation

4.1 Introduction

In this chapter we present detailed measurement based memory performance evalu-

ation of high throughput servers: streaming media servers, web servers and software

routers. We begin by presenting our experimental testbed and measurement tools in

Section 4.2. For each type of server, we present our choices of benchmarking tools,

experimental factors, and performance metrics. Each of these servers executes on

two operating system platforms: Linux and Windows. In order to focus our atten-

tion on the role of memory performance, we compare the performance of these two

platforms in terms of memory bandwidth utilization, multithreading performance,

48
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and context switching overheads in Section 4.3.

4.2 Experimental Testbed and Tools

Our experimental testbed comprises of a dual boot server machine that hosts one of

the three high throughput servers: streaming media server, web server, and software

router under one of two operating systems: Linux or Windows 2000 server. Six

triple-boot machines will be used as clients to generate workload for the server.

Testbed

The setup consists of a closed-LAN with a Cisco 1 Gbps multilayer switch (catalyst

3550). Servers run on a PC with Pentium IV 2.0 GHz, 256 MB SDRAM, single

40 GB EIDE hard drive (Western Digital WD400) and 3Com 1 Gbps Ethernet NIC.

The clients run on PCs, each comprising of a Pentium III 300 MHz, 96 MB RAM

and 100 Mbps NIC. Figure 4.1 illustrates our experimental test bed.

The only difference in the testbed when we consider software routers is that we

do not use the catalyst switch and the server has four NICs serving as router ports.

Clients connect directly to the server through the ports. Linux operating system is

configured to forward packets with Routed running as the routing deamon. Routed

dynamically maintains a kernel routing table based on RIP (routing information

protocol). Figure 4.2 illustrates testbed for software router.
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Dual boot server

(Windows 2000/Linux Server)
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(Windows 2000/Linux Server)

Catalyst 3550

1 Gbps switch

Figure 4.1: Experimental testbed consisting of a dual boot server and triple-boot
client machines connected through Cisco catalyst 3550 switch.
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Card

Linux Router

Server

Router clients
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Figure 4.2: IP forwarding testbed consisting of router machine and routing clients.
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Tools

We collect measurements for our metrics using a number of software tools that run

on the server machine in a non-intrusive way. Some tools run on both platforms

(Windows and Linux) while others run only on one platform. However, for platform

specific tools, we ensure that such tools exhibit very similar overhead (generally

minimally intrusive) on the specific operating system. The following tools were used

to collect server performance statistics:

• VTune performance analyzer (6.1): VTune is an Intel tool for performance as-

sessment and profiling of programs. VTune interfaces with Pentium processor

on-chip performance counters. We collect performance data on both Windows

and Linux using VTune.

• Windows 2000 performance monitor: This is a Windows platform performance

tool. Performance monitor has features similar to VTune.

• Netstat : a tool for measuring bandwidth and observing network related activ-

ities. We monitor network connection status using netstat. It is available for

both Windows and Linux.

• Linux tools: Some tools like vmstat, iostat and sar, are only available on

Linux. We use them in place of Windows performance monitor since that is

not available on Linux platform.
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4.3 Analysis of Operating System Role

Our performance evaluation of three selected high throughput servers involve imple-

mentations on two platforms: Linux and Windows 2000 server. In this section, we

investigate the role of these operating system on the performance of high through-

put servers. We measure memory throughput on the two operating systems in our

experiments. We also measure context switching overhead for the operating sys-

tems and compare the results. Our objective is to isolate any operating system level

inefficiencies that may impact memory performance of high throughput servers.

4.3.1 Memory Throughput

To capture the impact of different operating systems, we conduct an experiment to

analyze cache-to-memory and memory-memory throughput. ECT (extended copy

transfer) Memperf [64] is a method to characterize the performance of memory sys-

tems. It captures two aspects of the memory hierarchy: its behavior with temporal

locality by varying the working set size (block size) and the spatial locality by vary-

ing the access pattern (strides). Transfer bandwidth for a large volume of data is

used as a metric. We conduct the extended copy transfer characterization for load

sum test. The load sum test measures the memory throughput for all the block-sizes

and access patterns.

Figure 4.3 shows our Memperf microbenchmark result for Linux and Windows
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running on our server hardware. Both operating systems show similar memory

performance, with the memory throughput decreasing as the block size increases

beyond cache capacity. The worst case is when the block size is beyond 512 KB,

which is the size of the level 2 cache. We run test for stride = 1, representing

contiguous data. Based on these results, we conclude that difference in operating

systems does not impact difference in memory performance of the servers. In both

cases, a peak throughput of more than 5000 MB/Sec is observed, which is larger

than Pentium IV system bus bandwidth of 3200 MB/Sec. Spatial locality due to

multiple bytes of data blocks for each cache line results in high value of effective

throughput.
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Figure 4.3: Extended copy transfer characterization (stride = 1).
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4.3.2 Multithreading Support and Context Switching Over-

head

Both Linux and Windows operating systems have multithreading support. Linux

supports POSIX threads while Windows 2000 supports native windows threads. On

multiprocessor systems, the operating system schedules different threads to execute

on the different processors to improve performance.

We measure the overhead involved with context switching by running a simple

test [65] that creates threads and pass a token back and forth between them for fixed

number of times. The overhead of passing the token was shown to be negligible

compared to the overhead of the context switch. The test program uses critical

sections on Windows and pthread mutexes on Linux. Both Windows-critical sections

and Pthread mutexes are considered locks. Initially, a lock is created for each thread.

Each thread starts out owning a lock, which is a critical section on Windows and a

mutex on Linux. Each thread locks its own lock and then attempts to acquire its

neighbor’s lock. When it acquires a lock from someone else, it releases the currently

held lock and then attempts to get the next lock in sequence beyond the one it

currently possesses. The sequential use of locks in this manner yields a trail of

context switches which are measured. Figure 4.4 shows time per context for number

of threads from 2 to 128. Windows 2000 clearly out-perform Linux as the time

overhead for context switching in Linux is almost twice that in Windows.
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Figure 4.4: Context switching overhead on Linux and Windows.

4.4 Streaming Media Servers

Our experiment is basically video-on-demand scenario. Media clients make request

for media objects. These objects are normally resident on disk in compressed form.

The server starts streams to serve clients’ requests. For protocols processing, the

media object interacts with the processor in several ways. Protocol headers are ap-

pended, checksum is computed and finally passed to the network buffer. Processing

an object involves memory-CPU copying, memory-memory copying, and memory-

I/O copying involving copying a chunk from disk and when protocol processing is

completed, the object is sent to the network interface.

We use two representative streaming servers: Apple Darwin streaming server and

Microsoft media server. These servers are the most widely deployed on the Internet

for streaming infrastructure. Another factor that lead us to use these servers is
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because Darwin streaming server is available free while Windows media server ships

with Windows 2000 server distribution.

4.4.1 Experimental Design

The experimental design is discussed in this section. We discuss the choice of factors

based on our sensitivity analysis. The performance metrics are also presented.

Sensitivity Analysis

We conducted some initial experiments for our experimental design to determine

the effect of factors and variation explained by each of the factors. Using 2kr ex-

perimental design with replication, where k = 3 (number of client requests, encod-

ing rate and stream distribution) and r = 2 (two replications), we computed the

variation explained by each of these experimental factors. The number of client

requests explains the highest variation (62.29% of total variation). Encoding rate

(explained 19.33%) while stream distribution turns out to be marginally important

(explained only 4.94%). All interactions of these factors explain negligible variation

while experimental error explained a significant percentage (12.87%). High varia-

tion explained by experimental error could be attributed to random attributes in

the load simulators, which make experiments not exactly repeatable.
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Factors

We use experimental factors that enable us to observe the memory performance

behavior of the servers. The following are the factors used for this experiment:

• Number of streams (streaming clients): We vary the number of media streams

served. This corresponds to the number of media clients since each client is

served by one stream. The range is from 1 client to 1000 clients.

• Media encoding rate (56 Kbps and 300 Kbps): We consider two extreme cases

of media encoding rates: low end at 56 Kbps and high end at 300 Kbps.

• Stream distribution (unique or multiple media): Varying stream distribution

between unique and multiple cases enables us to change the amount of data

in the memory and also vary the rate at which disk will be accessed. Multiple

stream distribution leads to a case where not all requested media can reside

in memory, consequently leading to large disk access.

Metrics

We choose performance metrics that will enable us observe cache and memory sub-

system behavior on the server. We also consider metrics like throughput and CPU

utilization. The following is our list of metrics:

• Cache misses (L1 and L2 cache): On-chip caches are the fastest in the memory

hierarchy. They however have very low capacity which necessitates frequent
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accesses to higher units on the memory hierarchy. When the processor cannot

find requested data in the caches, cache miss will result and the main memory

will be accessed to obtain the data. Cache misses incur heavy penalty in terms

of stall cycles. We measure cache misses using on-chip performance counters

integrated into the processor. These are low level issues that require device

drivers for interfacing.

• Page fault rate: Page fault results when the requested data is not available in

memory. Page fault will lead to disk access. Disk access is very slow and the

consequence is a memory access stall.

• Throughput: Throughput is another key index of performance of these servers.

Servers are expected to deliver high throughput, especially when they are

serving large number of clients.

• Server CPU utilization: This is the system wide non-idle CPU time.

4.4.2 Benchmarking Tools

To the best of our knowledge, there is no common benchmarking tool for streaming

servers. This is due to the lack of one standard for implementation of servers.

For instance both Darwin streaming server and Windows media server operate on

entirely different protocols. We however ensured that our experiments are performed

under the same conditions to deliver a fair assessment of the performance of the
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servers.

We use streaming load tool to simulate streaming media clients. For Windows

media server we use Microsoft media load simulator while for Darwin streaming

server we use streaming load tool. Both simulators operate in similar manner,

making requests for media objects through launching a large number of clients. This

clients receive the requested media packet, examine it and discard after extracting

required information. Since the clients do not engage in CPU intensive decoding

and decompression of media data, they can support a large number of clients even

on low end machines. We generate more than hundred clients on a Pentium III

machine with 96 MB of memory.

4.4.3 Performance Evaluation

This subsection presents the results of our detailed measurements on streaming

media servers. We discuss cache and memory performance. We also discuss the

throughput and server CPU utilization.

Cache Performance

Figure 4.5 shows the L1 cache behavior under different configurations: number of

clients, encoding rate, and stream distribution. Measurements for both Darwin

Streaming Server (DSS) and Windows Media Server (WMS) are reported. Both

Figures (a) and (b) show increase in cache misses as the number of clients increases.
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Thought not to a large extend, the stream distribution and encoding rate also af-

fect the miss rate. When a client request for a media content, protocol processing

overhead is incurred, leading to multiple memory-to-memory copying and memory-

to-network copying operations. Though in the case of unique distribution, data

may not always be fetched from disk for all clients, protocol processing is performed

separately for each stream. These protocol processing overheads make the number

of clients the main contributor to the large number of cache misses at both level 1

and 2 caches.

We observe the worst case cache misses in both L1 and L2 when there is a large

number of clients requesting multiple streams at 300 Kbps encoding rate. For this

case, we started observing clients being refused connection by the server, which

eventually makes a client to time out. We show L2 cache behavior for 56 Kbps and

300 Kbps encoding in Figure 4.6. For our hardware: Pentium IV processor, L1 cache

is a data cache only while L2 is a mixed cache. This is why we observe a higher

number of L2 cache misses compared to L1 cache. For all these cases, Windows

media server exhibits lower L1 and L2 cache misses. This is most probably due to

cache-friendly design of WMS on Windows 2000 platform.
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Figure 4.5: Server L1 cache misses: (a) at 56 Kbps encoding (b) at 300 Kbps
encoding.
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Figure 4.6: Server L2 cache misses: (a) at 56 Kbps encoding (b) at 300 Kbps
encoding.
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Memory Performance

Main memory performance is considered in terms of page fault rate. Any data

referenced in the memory that is not available will be fetched from the disk. This

is an expensive and slow process. Disk access is very slow especially when frequent

disk references occur within a short duration. Disk is an I/O device attached to

the I/O bus with access time greater than that for RAM. Since data chunks may

not be necessarily stored in contiguous location on the disk, random seek time to

access some data can significantly increase the bottleneck. When all clients make

requests for the same media content (unique distribution), disk access is highly

minimized since the objects are likely to be served from memory for subsequent

accesses. However, when the stream distribution is multiple, several objects are

fetched from disk to memory. The memory cannot accommodate all objects, hence

served objects are flushed from memory. This means any future request for the same

object that was previously removed from memory will involve disk access again.

This situation leads to significant degradation in performance. It also results in

more memory copying since any data fetched from the disk will have to be buffered

in memory.

Figure 4.7 shows the page fault rates. When the distribution is unique, most

memory reference will hit in the TLB and there are fewer page faults. This is shown

by an almost flat page fault rate across all number of clients and this is same for
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all encoding rates. However, for multiple distribution, the page fault rate increases

with increase in number of clients, indicating more disk activity.

The consequence of high page fault rate shows in clients’ timeout. It is obvious

that as more disk activity is involved, disk access latency is exacerbated and the

server responds to clients’ request very slowly. Clients have time limits, after which

they timeout. We observe a high number of clients’ time out when there is a large

number of clients requesting large number of different media objects at high encoding

rate.
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Figure 4.7: Server page fault rates (a) at 56 Kbps encoding (b) at 300 Kbps encoding.

Throughput and CPU Utilization

We measure throughput as the total bytes delivered by the server per second. Fig-

ure 4.8 shows the throughput for 56 Kbps and 300 Kbps encoding rates. When the

number of clients is large, the server delivers at a higher bytes per second rate. This
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is especially true for low encoding rate where we do not experience clients timeout.

Since each client is served by a stream, the aggregate throughput for large number

of clients is high. This is obvious from the figure when the encoding rate is low.

However as we explained in the previous section, when clients are requesting multi-

ple media objects at high encoding rate, the number of clients timing out increases

significantly. We reach a situation where the number of clients is effectively less,

resulting in reduction in throughput. This is particularly obvious in Figure 4.8(b).

It corresponds to the situation where number of clients is beyond 100 and clients are

requesting multiple 300 Kbps media objects. We report higher throughput for Win-

dows media server for all the cases. Especially using multiple streams, WMS shows

higher throughput than DSS despite a greater page fault rate. It means that WMS

does a superior job hiding the latency of these page faults with useful streaming

media transaction processing.
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Figure 4.8: Server Throughput (a) at 56 Kbps encoding (b) at 300 Kbps encoding.
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The CPU utilization is shown in Figure 4.9. There is increase in CPU utilization

as the number of clients increases. For unique stream access, the CPU utilization

increases all the way up to 1000 streams. CPU utilization begins to fall when the

number of aborted clients due to time outs increases, as we explained earlier.
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Figure 4.9: Server CPU utilization (a) at 56 Kbps encoding (b) at 300 Kbps encod-
ing.

Table 4.1 summarizes our findings on memory performance evaluation of stream-

ing media servers. The table presents these findings while comparing the perfor-

mance of DSS and WMS. This comparison shows the importance of memory per-

formance tuning to obtain high server throughput. As we observe in WMS case,

simple latency hiding techniques, such as multithreading, can ensure higher through-

put even when excessive disk usage results in higher page fault rates.
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Table 4.1: Comparison of streaming media server performance with respect to se-
lected metrics.

Metrics
Applications

Darwin Streaming Server Windows Media Server

Cache miss Highest degradation in cache
performance (both L1 and L2)
when the number of clients is
large and the encoding rate is
300 Kbps with multiple multi-
media objects.

Exhibits same cache behavior
as Darwin streaming server but
incurs fewer cache misses for
both L1 and L2.

Page faults When clients demand unique
media objects, page fault rate
is constant. However, if the
request is for multiple objects,
the page fault rate increases
with the number of clients.

The same characteristics as
with Darwin streaming server.
It incurs more page faults at
multiple distribution requests.

Throughput Throughput increases
with number of clients. Higher
encoding rate – 300 Kbps, also
accounts for more throughputs.
Darwin streaming server has
less throughput compared to
Windows media server.

WMS shows same or higher
throughputs compared to DSS
under identical operating con-
ditions, the bandwidth charac-
teristics are same with Darwin
streaming server.

CPU utilization Higher CPU utilization, es-
pecially with unique streams.
This is consistent with latency
hiding observation.

Same CPU behavior pattern,
but has higher CPU utilization.
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4.5 Web Servers

A typical HTTP transaction consists of a request and a response. Request from

a client consist of a small packet carrying an HTTP command, such as GET. The

response comprises of an HTTP header followed by the requested object. When the

server receives a HTTP request, it invokes required protocol processing to extract

the information from the received packet header. The server responds by fetching the

requested object, likely from a disk to the main memory, passing it for processing

that involves memory-CPU copying, memory-memory copying, and memory-I/O

copying. Finally the object is forwarded via the network protocol stack to the

network buffer for delivery to the client.

Two representative web servers: Apache web server and Microsoft Internet In-

formation server (IIS) are used. These servers are the most widely deployed on the

Internet for WWW applications. Another factor that lead us to use these servers

is because Apache web server is available free while IIS ships with Windows 2000

server distribution.

4.5.1 Experimental Design

The experimental design is discussed in this section. We discuss the choice of factors

and metrics for these experiments.
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Factors

Experimental factors that enable us to observe the memory performance behavior

of the servers are used. The following are the factors used for this experiment:

• Number of WWW clients: This is the number of clients requesting HTTP

documents from the server. Each client sends a HTTP request for a particular

web document while the server responds to the request as fast as it could. All

HTTP requests are for static documents. We vary number of clients from 1

to 400.

• Document size: We vary document size from very small size (5 bytes) to very

large size (50 Mbytes). The set of our document represents a wide range of

document size distribution popular on the Internet, especially the range 10 KB

to 50 KB.

Metrics

Performance metrics that will enable us observe cache and memory subsystem be-

havior of the servers are chosen. We also consider metrics like throughput and CPU

utilization. The following is our list of metrics:

• Cache misses (L1 and L2 cache): On-chip caches are the fastest in the memory

hierarchy. They however have very low capacity which necessitates frequent

accesses to higher units on the memory hierarchy. When the processor cannot
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find requested data in the cache, cache miss will result and the main memory

will be accessed to obtain the data. Cache misses incur heavy penalty in terms

of stall cycles. We measure cache misses using on-chip performance counters

integrated into the processor. These are low level issues that require device

drivers for interfacing.

• Page fault rate: Page fault results when the requested data is not available in

memory. Page fault will lead to disk access. Disk access is very slow and the

consequence is a memory access stall.

• Throughput: Throughput is another key index of performance of these servers.

Servers are expected to deliver high throughput, especially when they are

serving large number of clients.

• Server CPU utilization: This is the system wide non-idle CPU time.

• Transactions/Sec (connection rate): It is a measure of how fast the web server

receives client requests and responds to such requests.

• Average latency: It is the latency observed by a client from the time the client

sends a request until it receives a response. Large latency means poor server

performance. Sometimes large latency might be as a result of congestion in

the network.
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4.5.2 Benchmarking Tools

We use popular web benchmarking tool known as Webstone [66]. Webstone was

used to generate large HTTP requests to the web servers. Webstone is a configurable

benchmark tool that allows performance measurement of web servers. Webstone was

originally developed by Silicon Graphics. Webstone 2.5 is Mindcraft’s enhancement

to Webstone 2.0.1 to improve reliability and portability as well as to make tests more

reproducible. Webstone creates a load on a web server by simulating the activity of

multiple clients, which are called web clients and which can be thought of as users,

web browsers, or other software that retrieves files from a web server. In other to

create large loads on a web server, Webstone is able to distribute WWW clients

among client computers. The Webmaster is the program that controls all of the

testing done by Webstone. With Webstone, we can measure average and maximum

connect time (delay), average connection rate, average and maximum response time

and data throughput rate.

4.5.3 Performance Evaluation

This section presents the result of our detailed measurements on web servers. We

discuss cache and memory performance. Our primary objective is to analyze the

impact of memory performance on web server throughput. We present our finding by

comparing the performance of two popular web servers: Apache and Microsoft IIS.
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Web Transactions

A web transaction is the series of client-server interactions that include: (1) a client

establishing a TCP connection with the server; (2) client sending its HTTP request;

(3) the server responding with the required document if available or with an error

code; and (4) the termination of the TCP connection. To make our discussion

clearer, we start by considering the relationship between web document size and

number of transactions. The size of the document requested by a web client is

highly significant for the performance of the web server in terms of both hardware

and software. Figure 4.10 shows that as the document size increases, the number

of transactions becomes smaller. For a large document size, the server and client

must maintain a connection for a longer time to transfer the file to the client. In

this case, connections are established and terminated over a relatively longer time

compared to when the document is small. Establishing a connection and terminating

it frequently will incur a heavy performance cost on the server side, especially when

there is a large volume of such transactions. As shown in the Figure 4.10, when the

document size is small, the rate of transaction is high. When the client requests

a small document, the server can send the entire document in one packet and tear

down the connection. As soon as the client receives the document, it sends another

request. On the other hand, when the requested document is very large, the server

sends the document as chunks in several packets. As long as the client is still
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receiving a response for a previous request, it cannot establish another connection,

resulting in low connection rate. Generally, the two servers perform poorly for very

small web documents. This observation is further supported by another study on

web servers by Hu et al [56]. Compared to Apache, IIS exhibits higher transaction

throughput for small to moderately large file sizes.
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Figure 4.10: Variation of server transactions with file size.

Cache Performance

As shown in Figures 4.11(a) and (b) , both L1 and L2 caches perform poorly for

small documents. Although this is surprising, it follows from the effect of document

size on the number of transactions as mentioned earlier: if the document size is

small, more connections are established and released within a short time. Frequent

connection establishment and release results in more activity for the processor and
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large number of cache misses (as will be shown in CPU utilization plot in the next

section). Apache performs worst in terms of cache misses. Apache is a process-based

server, which forks several processes that serially accept new connections. Although

Apache server tries to minimize the overhead of forking new processes by pre-forking

a pool of processes at initialization, the server resorts to forking a new process for

every request during heavy loads. New process creation is a CPU intensive activity

and leads to excessive cache misses. Generally, the two servers have poor cache

performance for small documents.
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Figure 4.11: Variation of server cache misses with file size.

Memory Performance

Memory performance in web servers is similar to streaming servers. A large docu-

ment cannot completely reside in memory and can only be served in smaller chunks.

Therefore, a large document will have to be continuously served from the disk using
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virtual memory subsystem. Every access to the disk is likely to incur a page fault

and a disk I/O operation. As was shown in Figure 4.7, high page fault rate was

observed when the document size is large. While a small document is likely to be in

memory after a recent access, the large documents must be read from the disk. Such

transfer from disk to memory involves moving data over the I/O bus to internal bus

and finally copying them to main memory. With large number of such transfers,

performance penalty becomes significant. The page fault rate shown in Figure 4.12

indicates that the page fault rate increases as the document size increases. When

the document size is 50 MB, the page fault rate is too high, resulting in long de-

lays to serve clients’ requests. At this stage, we observe frequent client time outs.

We observe that the web server performs optimally with an acceptable latency and

high bandwidth, when the document size is neither too small nor too large (see

Figure 4.13).

Figure 4.12 also indicates that Apache web server incurs larger page fault rate

compared to IIS when file size is unusually large in the range of 50 MB. I/O and

network interfaces under Linux appear to favor larger file transfers more compared

to small and medium length files. This observation can again be confirmed by

considering throughput and CPU utilization plots (See Figure 4.13).
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Figure 4.12: Variation of server page fault rate with file size.

Throughput, Latency, and CPU Utilization

Peak throughput was observed at 500 KB and 5 MB document sizes as shown in

Figure 4.13(a). However, at this point of high throughput, the latency is very high

(see Figure 4.13(b)). If clients experience long latencies in accessing documents

from a web site, such clients may abandon the request and switch to other web sites

or may not visit the site again. So it is very important for web servers to serve

clients’ request as quickly as possible. For all cases, Apache server delivers higher

throughput compared to IIS. Generally, throughput increases with document size.
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(a) Throughput

(b) Latency

(c) CPU utilization
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For small document sizes, clients generally experience low latency. If the docu-

ment is large, in the range of 5 MB to 50 MB, the latency becomes too high and

clients might even timeout. Server latency is shown in Figure 4.13(b). A major con-

tributor to server latency is disk access time. Our server hardware has a single disk,

which can easily become a bottleneck. Other factors contributing to high latency

are cache misses and page faults because of their resulting high penalty in terms of

CPU cycles.

CPU utilization is shown in Figure 4.13(c). It is easy to saturate the server

(100% CPU utilization) when the requested document is small. As we explained

earlier, when the requested document is small, the number of transactions per second

(connection rate) becomes high and more connections are setup and terminated

resulting in more CPU utilization.

While evaluating web server performance, we should not overlook the fact that

most of the HTTP transactions transfer objects that are close to 10 KB in size.

Table 4.2 compares Apache and IIS web servers at this critical file size. IIS shows

about 58% higher throughput over Apache. The only notable difference between

the performance of the two is remarkably lower L1 and L2 cache misses for IIS at

this critical operating case.



78

Table 4.2: Comparison of Apache and IIS web servers for an average file size of
10 KB.

Value
Attribute Apache IIS

Max. transaction rate (Conn/Sec) 2586 4178 (58% more than Apache)
Max. throughput (Mbps) 217 349 (62% more than Apache)
CPU utilization (%) 71 63
L1 misses (Millions) 424 200
L2 misses (Millions) 1673 117
Page fault rate (PFS/Sec) < 10 < 10

Table 4.3 summarizes our discussion on memory performance evaluation of two

popular web servers: Apache and Microsoft IIS.

Web server performance evaluation again emphasizes the critical role of mem-

ory subsystem performance in delivering high throughput. At a critical file size of

10 KB, IIS shows more than 50% higher throughput (both in terms of number of

transactions per second and total bytes transferred per second) compared to Apache

due to superior cache performance. Considering all else being identical in Linux and

Windows 2000 server, IIS protocol processing is more cache friendly on Windows

platform compared to the same for Apache on Linux, resulting in significantly high

throughput.
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Table 4.3: Comparison of Apache and IIS web server performance.

Metrics
Applications

Apache Web Server Internet Information Server

Cache miss Highest cache misses for both L1
and L2 are observed when the
document size is small. Mini-
mal number of cache misses is
recorded for the largest document
(50 MB).

The same pattern of cache misses
with Apache server. IIS has a
much better cache performance
(lower cache misses) compared to
Apache server.

Page faults Very low page faults when the
document size is small. However,
at very large document size, the
page fault rate is very high.

Same behavior with Apache
server.

Throughput
in Mbps

Higher bandwidth is recorded
for larger number of clients re-
questing document of large size.
Apache recorded a highest band-
width of 649.43 MB/Sec.

Highest bandwidth recorded is
553 MB/Sec.

Transactions
per second

Number of transactions per sec-
ond decreases as the document
size becomes larger. The highest
transaction was recorded at 4064
per second.

With similar pattern,
IIS recorded a higher number of
transactions at 7633 per second.

Average
latency

Clients perceive the highest la-
tency when the document size is
very large.

Clients perceive the highest la-
tency when the document size is
very large.

CPU
utilization

Higher CPU utiliza-
tion is observed for smaller doc-
uments. Apache has higher CPU
utilization.

IIS has less CPU utilization com-
pared to Apache. Both show the
same pattern in CPU activity
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4.6 Software Router

Software routers are implemented on general-purpose PC platforms. In addition to

routing and forwarding of IP packets, these routers can utilize the general purpose

platform to provide other value added services, including differentiated services,

packet filtering, firewalls, and load balancing. Since packet forwarding is the most

frequent of all of these services, we will focus on performance evaluation of software

router with respect to it.

In IP forwarding, the packet is intercepted from the NIC and copied to the IP

layer, which results in NIC-memory transfer of the entire packet. To examine the

packet header in the IP layer, it is copied to the processor cache resulting in a

compulsory cache miss. The router forwards the packet by examining the routing

table, which also involves memory access. Updating the IP packet header also

involves memory access. The packet is finally forwarded to the selected interface.

In the case of high throughput IP forwarding on software routers involving multiple

NICs, bus contention becomes a significant issue that can inhibit performance. Even

though the bus bandwidth may be high, performance is likely to be marred due to

bus contention and context switching of processes that are responsible for routing

and forwarding.
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4.6.1 Communication Configurations

Since routers determine communication path between clients, different communica-

tion paths are explored with the aim of observing performance for different commu-

nication configurations. We are able to evaluate the performance of IP forwarding

for several instances of client-to-client communication route. Figure 4.14 illustrates

the communication configurations.
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Figure 4.14: Routing configurations showing simplex and duplex modes.
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4.6.2 Experimental Design

The experimental design is discussed in this section. We discuss the choice of factors

and metrics for these experiments.

Factors

We use experimental factors that enable us to observe the memory performance

behavior of the servers. The following are the factors used for these experiments:

• Routing configurations in eight levels as shown in Figure 4.14.

• TCP message size: We observe the effect of IP payload size by varying the

TCP message size. We consider small packet size at 64 B, medium size at

10 KB and large size at 64 KB.

Metrics

We choose performance metrics that will enable us observe cache and memory sub-

system behavior on the server. We also consider metrics like throughput and CPU

utilization. The following is our list of metrics:

• Throughput: Throughput is another key index of performance of these servers.

Servers are expected to deliver high throughput, especially when they are

serving large number of clients.

• Server CPU utilization: This is the system wide non-idle CPU time.
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• Number of context switching: System context switching for high performance

IP forwarding is a source of significant overhead. We measure number of

context switching per second.

• Number of active pages: Recently touched pages (normally 4 KB per page

in Linux) in memory. Number of active pages provides insight on memory

activity of the software router.

4.6.3 Benchmarking Tools

Industry standard benchmarking tool for networks, Netperf [67] is used. Netperf

is a network performance benchmarking tool that can be used to measure various

aspects of network performance. Netperf can generate high network traffic for both

TCP and UDP, and was used to generate IP traffic for the software router. For

these experiments, Netperf was used to generate IP traffic (TCP) from the clients,

which have to be routed based on the destination IP address.

4.6.4 Performance Evaluation

Our major concern is IP forwarding at the highest throughput possible while also

examining system activities like CPU utilization and context switching. We focus

on memory by observing the variation of active memory pages – how frequently

memory pages change. We report measurements on interface throughput, context
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switching per second, CPU utilization and number of active pages per second.

Throughput

A peak throughput of 449 Mbps is observed. This is less than our interface capacity

of 1 Gbps. This bandwidth is achieved for configuration number two – 1-to-1 com-

munication in duplex mode. In this configuration, only two interfaces (NICs) on the

forwarding machine are involved in the routing. With only two NICs involved, bus

contention is minimal and the context switching is also low. Throughput measure-

ments for all the interfaces are shown in Figure 4.15.

Configuration number six (full duplex 1-to-4 tree communication pattern) also

indicates high throughput through interface eth0 on the server. In this configuration,

one host sends packets to three other hosts through eth0, hence the interface eth0

carries the aggregate traffic for three machines, leading to high traffic flow. In

general, the throughput of a software router for small packets is low. When the

packet is only 64 B, a lot of overhead is incurred as large number of context switching

is observed. For instance, the IP header is 20 B minimum and the TCP header is

also 20 B, which means an overhead of more than 60%. Regardless of the packet,

it has to go through the same protocol processing, resulting in low byte payload,

which inhibits high throughput IP packet forwarding.
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Figure 4.15: Router NICs throughput.
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Context Switching

Number of context switching per second indicates a measure of how the system

switches between NICs to use the shared I/O bus . We report the highest context

switching rate of 5378 per second, which was observed for configuration number eight

(full duplex ring communication pattern) when the packet is small (64 B). In this

configuration, all NICs are involved in passing traffic in both directions. We expect

the highest bus contention in this case, resulting in low overall traffic throughput.

The context switching rates for all eight configurations are presented in Figure 4.16.
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Active Page

As shown in Figure 4.17, the number of active pages is almost uniform throughout

the eight routing configurations. It does not show significant variation with packet

size as well. This is an indication that memory activity is not very high. Generally,

packet payload is not modified during forwarding. Only the IP header undergoes

modification to update, for instance time-to-live (TTL) and header checksum fields.

But since the header is very small, this modification does not trigger large memory

activity.
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CPU Utilization

All CPU activity was at the kernel level. In fact, we observe almost zero CPU

utilization in the user space. The highest CPU utilization of 84% was observed for

configurations four and eight when the packet size is medium and large. These con-

figurations both involved full duplex communication, utilizing all interfaces. The

lowest CPU activity on the other hand is for configuration one. These measure-

ments clearly show that as we have more interfaces involved in forwarding, the CPU

utilization also increases. This is intuitive as we observe more context switching for

these configurations. CPU utilization is shown in Figure 4.18.
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For high performance IP forwarding, main performance constraints are likely to

be CPU and bus contention, which manifests in the form of large number of context

switches. It is obvious that as we increase the number of interfaces on the routing

server, we would hit CPU saturation for most routing configurations and the number

of context switches is likely to increase.

Table 4.4 summarizes our discussion on memory performance evaluation of soft-

ware router.

Table 4.4: Summary of IP forwarding performance.

Metrics Performance

Throughput IP forwarding attained a maximum bandwidth of
449 Mbps for configuration number 2 – full duplex
one-to-one communication.

CPU utilization The highest CPU utilization of 84% was observed
for configurations four and eight when the packet
size is medium and large. These configurations
both involved full duplex communication utilizing
all interfaces.

Context switching Highest context switching rate of 5378/Sec was
observed when more interfaces (NICs) are in-
volved in forwarding packets, indicating higher
contention for shared I/O bus.

Number of active pages Fairly uniformly distributed active page fig-
ures indicates that memory activity is not very
intensive.
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4.7 Summary

We discussed memory performance evaluation for representative high throughput

servers. Our study focused on memory performance issues including L1 and L2 cache

misses, page fault rates, and other metrics directly related to server throughput.

For streaming media servers and web servers, cache misses and page fault rates are

significant when the number of clients is large, and these are sources of performance

limitation. What we observed as main performance limiting factors for software

routers are context switching overheads and CPU utilization. As we have more

ports on the router, context switching will increase significantly and CPU will be

saturated.

The highest throughputs measured are: 57.36 Mbps, 649.43 Mbps and 449 Mbps

for streaming server, web server and software router, respectively. In all these cases,

the measured throughputs are much less than the calculated peak in Chapter 3.

Though our peak throughput estimates were based on simplifying assumptions, it

is still possible to obtain throughputs higher than what we measured if we fine tune

the operating systems and enhance the design of the servers to hide latency.



Chapter 5

Design, Implementation, and

Performance Evaluation of a

Double Buffer RTP(DB-RTP)

Server

5.1 Introduction

In this chapter, we discuss the implementation of a prototype RTP server designed

to hide disk access latency by pre-fetching and read-ahead buffering. Among the

three types of high throughput servers we are considering in this thesis, our imple-

mentation choice of streaming server is due the non-availability of an open standard
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based implementation of the streaming servers incorporating techniques to enhance

memory and/or disk performance. The design utilizes double buffer in the memory

to simplify buffer read/write synchronization . Due to sequential nature of media

stream access, blocks that are required later for playback can be pre-fetched ahead

of time and stored in the buffer. Read ahead buffering increases the deadline bound

of a request, leading to a decrease in the loss probability [43] and will minimize jitter.

We also present a detailed measurement-based performance evaluation of DB-RTP

server.

5.2 Design Overview

In this section, we outline the architecture of our DB-RTP server. We discuss the

design concepts of pre-fetching and double-buffering as well as the synchronization

mechanism.

5.2.1 Architecture

Figure 5.1 illustrates the architecture of our double buffer RTP server. In this

design, a pair of memory buffers is available for each stream. The server streams

to the client from these buffers, alternating between the two buffers. Media object

chunk is fetched ahead of time and buffered into one of the memory buffers. The

RTP packetizer retrieves the media chunk, appends the RTP header, and passes it
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to the UDP/IP protocol stack. To respond to clients’ request, we have implemented

a stream-lined RTSP server, which listens on the standard RTSP port number 554.

All clients direct their requests for media objects to the RTSP server. The RTSP

server parses the request and schedules a new stream to fulfill such requests.

RTP

packetizer
NIC

UDP/IP

&

TCP/IP

stack

RTSP server

&

scheduler

Parser

RTP server
Disk memory buffer

media chunk RTP packet IP packet

To media client

From media client

Figure 5.1: Architecture of a double buffer RTP server.

5.2.2 Double Buffering and Synchronization

We employ double buffering to simplify synchronization procedure when accessing

and writing to the buffers. While one buffer is refilled, the other buffer will be read.

Synchronization is explicit as we describe shortly. The buffering procedure is shown

in Figure 5.2.

When the RTSP server schedules a client’s request, a block of the media chunks

is fetched from the disk and written to buffer A. This block contains ten chunks of

media page, which will subsequently make up ten RTP packets. Buffer B is filled
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Figure 5.2: Illustration of double buffering (a) Writing to the double buffer (b) Read-
ing from the double buffer.
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in a similar fashion. The freshness of a buffer is indicated by a dirty bit. When

the dirty bit for a buffer is set, it means the buffer is ready for reading. However,

when the bit is reset, the RTP packetizer cannot read the buffer. While the RTP

packetizer accesses the buffer according to the rate at which the packets are streamed

to the client, which depends on the encoding rate, the buffer is filled as fast as the

disk access latency allows. Therefore, the RTP packetizer cannot wait for buffer

access, thereby eliminating the possibility of jitter being introduced due to disk

access latency variation when the number of clients is large and disk bandwidth

becomes a limiting factor.

Filling of the buffer is done as follows: a bit, called the next bit, determines the

order in which the filling of the buffer proceeds. When buffer A is filled with the

first ten pages, next bit is set and subsequent ten pages are buffered in B after which

the bit is cleared. Buffer A is next refilled and the process continues until the entire

media object is streamed to the client or the media transaction is terminated.

5.3 Implementation

We implemented the DB-RTP server for Linux platforms. Porting to other unix

versions should not require any significant changes in the code, especially if POSIX

threads are supported. The server responds to multiple clients by creating threads

to handle different connections. To hide disk access latency, we employ a separate
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thread to handle disk access for each stream. In other words, each media stream

is served by two threads. One thread pre-fetches a media chunk from the disk and

buffers it into the memory, while the main thread reads a chunk from the memory

and streams it to the client. This prevents the main thread from blocking due to

disk latency.

Apart from standard C libraries and system calls, we did not utilize any com-

mercial or free RTP/RTSP libraries e.g., [68]. Working with the raw C libraries and

system calls enables us to address performance issues that we can even fine tune.

As explained previously, our prototype is multithreaded. We use the POSIX

thread library. Our choice of threads over a multi-process based server is due to the

low overhead of thread creation compared to processes. In addition, shared address

space among threads simplifies the design and implementation.

In Figure 5.3, we show a screen shot of our RTP packets using a protocol analyzer,

Ethereal [69]. We use Ethereal to capture some packets while the server is streaming

media to clients. We show the IP packets and the UDP segment containing our RTP

packets.

5.4 Experimental Setup and Load Tool

The experimental setup and load tool used in memory performance evaluation of

the prototype DB-RTP server is presented in this section.
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Figure 5.3: Screen shot of DB-RTP server packets captured during streaming session.
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5.4.1 Experimental Setup

The experimental setup for the performance evaluation of our prototype DB-RTP

server is identical to the experimental setup used for streaming media servers de-

scribed in Chapter 4. We use same performance metrics. However, we maintain a

unique encoding rate of 300 Kbps as this encoding rate has more impact on perfor-

mance compared to 56 Kbps.

For the purpose of comparison, we designed another RTP server with same func-

tionality as the DB-RTP server, except that the RTP server does not incorporate

any enhancement on pre-fetching and buffering. While each stream in DB-RTP

server utilizes two threads to hide disk access latency, the RTP server uses a single

thread to serve clients. We implement this RTP server to evaluate the performance

impact of pre-fetching and buffering

5.4.2 Load Tool

We design a streaming load tool that is capable of generating a large number of

clients to request streaming media objects from the server. This tool generates

large volume of clients requesting streaming media objects by spawning multiple

threads. The number of clients generated and the stream distribution – either

all clients requesting same media object or multiple objects – can be specified at

command line. Our load tool economizes the use of client machine resources; hence
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it is capable of generating a large number of client requests simultaneously. We also

incorporate client-side logging of streaming statistics in terms of number of packets

lost and jitter.

5.5 Performance Evaluation

In this section we discuss the results of measurement-based performance evaluation

of the prototype DB-RTP server. We use RTP server implementation without en-

hancements – prefetching and buffering – to serve as a base line for performance. We

use four alternative implementations for this comparison: (1) RTP-unique, (2) RTP-

multiple, (3) DB-RTP-unique, and (4) DB-RTP-multiple. Here unique and multiple

refer to the streaming object that the server serves to its clients.

5.5.1 Cache Performance

Figure 5.4(a) compares L1 misses for four server implementations: RTP-unique,

RTP-multiple, DB-RTP-unique, and DB-RTP-multiple. Similar to our previous

results, the cache misses generally increases with the number of clients. L1 cache in

Pentium IV is a split cache – data cache only, hence as more clients are requesting

media, the amount of data that has to be moved between cache and memory is large.

Since the media data has poor temporal locality and little data reuse, we experience

large number of cache misses. Also, since DB-RTP prefetching and buffering is
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implemented in the memory, we do not expect any improvement in cache behavior

over regular RTP server. The L2 cache behavior is shown in Figure 5.4(b). We

observe wide variation in L2 cache misses. Since L2 is a mixed cache, this variation

can be attributed to movement of media data and program instruction through the

cache.
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Figure 5.4: Variation of server cache misses with number of clients (a) L1 cache
misses (b) L2 cache misses.

5.5.2 Throughput and CPU Utilization

The DB-RTP server shows improvement in throughput delivered to the clients,

especially when the number of clients is relatively large. This is shown in Figure 5.5.

At large number of clients with multiple stream distribution, disk access latency is

likely to be high, hence becoming a potential bottleneck on performance. Prefetching
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and double buffering here shows its merit as the bandwidth in this condition is higher

than that for the RTP server that does not incorporate prefetching and buffering.

We expect even a better performance when multiple disks are used to distribute

disks loads.
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Figure 5.5: Server aggregate throughput (in terms of total bytes transferred per
second).

As shown in Figure 5.6, DB-RTP server shows higher CPU utilization. It is

intuitive when we have the DB-RTP server using more CPU since it utilizes twice

the number of threads used by the regular RTP server. Higher CPU utilization is

observed due to greater overhead in context switching of threads. The larger the

number of threads we have, the greater the overhead due to context switching.
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Figure 5.6: Server CPU utilization.

5.5.3 Packet Loss and Jitter

For both servers, we did not record any packet loss. It is not surprising since we are

using a closed-LAN operating at 1 Gbps. Probability of packet loss is higher when

the packets have to cross a router. In our case, all packets are switched within a

single collision and broadcast domain.

We also log inter-packet arrival delay at the clients’ end. Figure 5.7 shows the

average jitter for the clients. What we refer to as average jitter in this case, is

the average of the difference in inter-arrival times of consecutive packets. Media

applications expect a uniform and relatively low inter-arrival delay. As shown in

the figure, both servers show a uniform average jitter. However, the DB-RTP server

show a lower inter-arrival delay. Packet delays can start from the server if the disk

access becomes very high to the extent that disk bandwidth cannot sustain the rate

at which media object is requested to be streamed. Our pre-fetching and double
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buffering alleviates this situation where disk becomes a bottleneck.
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Figure 5.7: Streaming client jitter.

5.6 Summary

L1 cache miss increases with number of clients. On the other hand, L2 cache misses

vary in a non-regular manner. While L1 is a split cache for data only, L2 is a mixed

cache. The same observation applies to RTP server for cache behavior. Through-

put increases with number of clients. While we observe maximum throughput of

63.85 Mbps for DB-RTP server, the observed throughput for RTP server is 59 Mbps.

For jitter, both servers exhibit steady jitter, but DB-RTP has relatively lower jitter

compared to RTP server.

DB-RTP server shows, though, marginal gain in throughput and jitter, prefetch-

ing and buffering would show more advantage when the number of clients is very
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large – in the range of thousand clients. However, as the number of clients grow

larger, another factor that will negatively affect performance is threads scheduling

overheads. We are constrained to use low number of clients in our experiments due

to the limitation of the number of threads that can be spawned per process. This

is a Linux kernel 2.4 limitation that we hope to address in our future work.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we thoroughly analyzed the impact of memory subsystem on perfor-

mance of representative high throughput network devices. We analytically calcu-

lated peak throughput with respect to available memory and I/O bandwidth and

conducted measurement-based performance studies of key high throughput servers:

Apple Darwin streaming server and Windows media server; Apache web server and

Microsoft Internet Information server; and Linux software router. We also designed

and implemented an enhanced RTP server that uses double buffering to hide laten-

cies due to disk accesses and memory buffering.

The following can be concluded based on the analytical and measurement-based

memory performance evaluation reported in this thesis:
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• Analytically derived optimistic peak throughputs bounds show that network

applications deployed on general-purpose microprocessor based platforms can

be enhanced to deliver high throughput if software overhead and related con-

straints like bus contention are resolved.

• Measurement results show that server throughput is significantly degraded by

excessive cache misses and page faults. Penalty of cache misses and page faults

are significant because of the resulting high latency in servicing a cache miss

or page fault.

• Our prototype shows that performance improvement in throughput and jitter

can be gained by implementing efficient memory buffering in streaming media

servers.

• We also used microbenchmarks to investigate the contribution of operating

system impact on specific aspects of performance. On memory transfer, we

find Linux operating system (kernel 2.4.7-10) comparable to Windows 2000,

while for context switching overhead, Linux shows higher overhead per context

switch.

Memory performance, as we demonstrated in this work, is a key inhibiting factor

for throughput of network servers. Any means that will improve memory subsystem

performance (on-chip and off-chip caches, main memory, and virtual memory) will

bring significant benefit to the performance of these servers. As memory access speed
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remains a technology dependent issue, viable solutions such as, memory latency

hiding have shown remarkable improvement.

6.2 Open Questions

While this thesis reported analytical as well as measurement based performance

evaluation of high throughput servers for network infrastructure applications, it

raises several other interesting questions. The rest of this section presents these

open questions. We consider them as open questions only because further research

efforts are needed to provide concrete answers to these questions.

With specific-purpose architectures like network processor, the system CPU will

be relieved from some computational demand [10]. This can be investigated against

the use of general-purpose architectures. Network processor for example can reduce

contention for the system’s internal bus and I/O bus. Use of intelligent network

adapters at MAC layer can also be investigated to see their effect on performance

of high throughput servers.

How will memory compression affect high throughput servers? Memory compres-

sion has been used as a means to enhance system performance [30] Memory com-

pression and decompression is CPU intensive, and how it will affect high throughput

servers requires further investigation. For instance, the content served by a stream-

ing media servers is compressed and how significant is the memory compression to
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a server that serves already compressed content remains to be seen.

Scheduling issues are important for high throughput servers and require further

investigation. Bus scheduling aimed at reducing conflict/contention may impact

the performance of high throughput servers. Extent of this impact remains to be

evaluated. Determining an optimal number of NICs that can be used for a particular

type of bus is another important open question.

6.3 Future Research

A number of related research efforts can benefit from the findings reported in this

thesis. We outline some of them in the following:

Server Development

An efficient server design can incorporate polling with multiplexing, and multi-

threading to minimize process scheduling overhead to the operating system. A server

design that uses multiplexing to serve multiple request has low context switching

overhead. In addition, multithreading is a useful mechanism for tolerating mem-

ory access latency. Using both schemes will yield a hybrid server design that will

incorporate the benefits of both the methodologies.
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Special Architectures

Special architectures like network processors and other ASIC-based devices can be

investigated for specific server applications to boost performance. The areas that

can be investigated further include:

• Resource scheduling – new mechanisms and algorithms for CPU and bus con-

tention based scheduling optimized with respect to minimum contention for

bus rather than efficient CPU use.

• Investigation of the role of I/O overhead, in addition to the memory overhead.

• Use of IRAM (intelligent RAM) architectures [70, 71].

• Implementation of an integrated network infrastructure server that includes

low-level IP packet forwarding as well as higher-layer level value-added service

processing like differentiated service (DiffServ), webmulticast, proxy, network

address translation (NAT), voice over IP (VoIP) gateway, etc.

In contrast to the above open questions and future research, this thesis has thor-

oughly analyzed the fundamental high throughput networking server issue: the mem-

ory performance. Many other server performance issues, such as I/O performance,

use of IRAM architectures, or bus scheduling will benefit from the understanding of

memory performance gleaned from this work.
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